Hyperparameter Tuning Implementation
HardHyperparameter TuningModel SelectionCross-ValidationGrid SearchRandom SearchOptimization
Implement grid search and random search for hyperparameter tuning from scratch. Compare different search strategies and understand their impact on model performance.
Problem:
Implement grid search and random search for hyperparameter tuning from scratch. Compare different search strategies and understand their impact on model performance.
Examples:
Input: param_grid = {"C": [0.1, 1], "kernel": ["linear", "rbf"]}
grid_search_cv(SVC(), param_grid, X, y)
Output: Best parameters: {'C': 1, 'kernel': 'rbf'}
Best CV score: 0.9500
Grid search example with SVM parameters
Input: param_dist = {"C": np.logspace(-1, 1, 100)}
random_search_cv(SVC(), param_dist, X, y, n_iter=5)
Output: Best parameters found after 5 iterations
Best CV score: 0.9450
Random search example with continuous parameter
Constraints:
- Must implement both grid and random search
- Must use cross-validation for evaluation
- Must handle multiple parameter types
Code Editorpython
Run your code to see the output here.
Output
Run your code to see the output here.